题目内容
12.实数x,y满足$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$,则z=y-x的最大值是( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$画出平面区域,如图所示.![]()
A(0,1),
化目标函数z=y-x为y=x+z,
由图可知,当直线y=x+z过点A时,目标函数取得最大值.
∴zmax=1-0=1.
故选:A.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
3.已知$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,m)$,若$\overrightarrow a⊥\overrightarrow b$,则$|\overrightarrow b|$=( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
7.函数$y=\frac{1}{{\sqrt{{{log}_2}({4x-1})}}}$的定义域为( )
| A. | $(0,\frac{1}{2})$ | B. | $(\frac{3}{4},+∞)$ | C. | $(\frac{1}{2},+∞)$ | D. | ($\frac{3}{4}$,1) |
17.数列{an}是等差数列,且a1>0,若a1008+a1009>0,a1008•a1009<0同时成立,则使得Sn>0成立的n的最大值为( )
| A. | 2016 | B. | 2017 | C. | 2018 | D. | 2019 |
2.下列命题中,真命题是( )
| A. | ?x∈R,x2≤x-2 | |
| B. | ?x∈R,2x>2-x2 | |
| C. | 函数f(x)=$\frac{1}{x}$为定义域上的减函数 | |
| D. | “被2整除的整数都是偶数”的否定是“至少存在一个被2整除的整数不是偶数” |