题目内容
抛物线y2=-8x的准线方程是________.
x=2
已知2tanα·sinα=3,-<α<0,则cos(α-)=____________.
若双曲线-=1(a>0,b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7∶3的两段,则此双曲线的离心率为________.
如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(1) 求椭圆E的方程;
(2) 设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.
(1) 求证:A、M、B三点的横坐标成等差数列;
(2) 设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.
已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则OM=________.
根据下列条件求椭圆的标准方程:
(1) 两准线间的距离为,焦距为2 ;
(2) 已知P点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为过P点作长轴的垂线恰好过椭圆的一个焦点.
已知双曲线的离心率等于2,且经过点M(-2,3),求双曲线的标准方程.