题目内容
9.求下列各函数的定义域.(1)y=x${\;}^{-\frac{3}{2}}$;
(2)y=$\sqrt{9-{3}^{x}}$;
(3)y=1n(3x+1).
分析 根据函数y的解析式,列出使函数解析式有意义的不等式(组),求出解集即可.
解答 解:(1)∵y=x${\;}^{-\frac{3}{2}}$=$\frac{1}{\sqrt{{x}^{3}}}$,
∴x>0,
∴函数y的定义域为(0,+∞);
(2)∵y=$\sqrt{9-{3}^{x}}$,
∴9-3x≥0,
即3x≤9,
解得x≤2,
∴函数y的定义域为(-∞,2];
(3)∵y=1n(3x+1),
∴3x+1>0,
解得x>-$\frac{1}{3}$,
∴函数y的定义域为(-$\frac{1}{3}$,+∞).
点评 本题考查了根据函数的解析式求定义域的应用问题,解题的关键是关键解析式列出使函数有意义的不等式(组),是基础题.
练习册系列答案
相关题目
7.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点(4,0),且其渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | D. | x2-$\frac{{y}^{2}}{16}$=1 |