ÌâÄ¿ÄÚÈÝ

18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}+t}\\{y=3+2t}\end{array}}\right.£¨t$Ϊ²ÎÊý£©£¬ÒÔÔ­µãoΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{3}cos¦È$£®
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌÓëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚµãA£¬B£¬ÈôµãPµÄ×ø±êΪ$P£¨\sqrt{3}£¬3£©$£¬Çó$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$µÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥t£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÄÜÇó³öÔ²CµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈë${£¨x-\sqrt{3}£©^2}+{y^2}=3$ÖУ¬µÃ5t2+12t+6=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨ÀíÄÜÇó³ö$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}+t}\\{y=3+2t}\end{array}}\right.£¨t$Ϊ²ÎÊý£©£¬
¡àÏûÈ¥t£¬µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ£º$y=2x+3-2\sqrt{3}$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{3}cos¦È£¬{¦Ñ^2}=2\sqrt{3}¦Ñcos¦È$£¬
¡à${x^2}+{y^2}=2\sqrt{3}x$£¬
¡àÔ²CµÄÖ±½Ç×ø±ê·½³ÌΪ${£¨x-\sqrt{3}£©^2}+{y^2}=3$£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈë${£¨x-\sqrt{3}£©^2}+{y^2}=3$ÖУ¬
ÕûÀí£¬µÃ5t2+12t+6=0
ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
¡ß¡÷£¾0£¬¡à${t_1}+{t_2}=-\frac{12}{5}£¬{t_1}{t_2}=\frac{6}{5}£¨{t_1}£¬{t_2}$ͬºÅ£©
¡à$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=\frac{1}{{\sqrt{5}|{t_1}|}}+\frac{1}{{\sqrt{5}|{t_2}|}}=\frac{{|{{t_1}+{t_2}}|}}{{\sqrt{5}|{{t_1}{t_2}}|}}=\frac{{2\sqrt{5}}}{5}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߵįÕͨ·½³Ì¡¢ÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶ε¹ÊýºÍµÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Î¤´ï¶¨ÀíµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø