题目内容
9.已知变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥1}\\{3x+y≤3}\\{x≥0}\end{array}}\right.$,则目标函数z=2x+y的最小值是( )| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A(0,1)时,直线的截距最小,
此时z最小,
此时z=0×2+1=1,
故选:D.
点评 本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.
练习册系列答案
相关题目
19.设两直线l1:(3+m)x+4y=5-3m与l2:2x+(5+m)y=8,则“l1∥l2”是“m<-1”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
20.若全集U=R,集合M={x|x2>4},N={x|$\frac{3-x}{x+1}$>0},则M∩(∁UN)等于( )
| A. | {x|x<-2} | B. | {x|x<-2}或x≥3} | C. | {x|x≥32} | D. | {x|-2≤x<3} |
4.方程${log_{\frac{1}{2}}}x={2^x}-2016$的实数根的个数为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 无数个 |
14.在区间[-2,2]上随机取两个实数a,b,则“ab>1”是“|a|+|b|>2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |