题目内容

8.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足c2=a2+b2-$\sqrt{2}$ab,则角C=45°.

分析 利用余弦定理表示出cosC,把已知的等式变形后代入求出cosC的值,由C的范围,利用特殊角的三角函数值即可求出角C的度数.

解答 解:在△ABC中,由c2=a2+b2-$\sqrt{2}$ab,得到a2+b2-c2=$\sqrt{2}$ab,
则根据余弦定理得:
cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}ab}{2ab}$=$\frac{\sqrt{2}}{2}$,
又C∈(0,180°),
则角C的大小为45°.
故答案为:45°.

点评 此题考查了余弦定理的应用,要求学生熟练掌握余弦定理的特征,牢记特殊角的三角函数值.学生做题时注意角度的范围,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网