题目内容
15.| A. | {0,1,2} | B. | {1,2} | C. | {1} | D. | {0,1} |
分析 由韦恩图可知阴影部分表示的集合为(CUB)∩A,根据集合的运算求解即可.
解答 解:由韦恩图可知阴影部分表示的集合为(CUB)∩A
∵全集U=R,B={x∈N|x>2},
∴CUB={x∈N|x≤2}={0,1,2}
∵集合A={x∈N|x2-6x+5≤0}=A={x∈N|1≤x≤5}={1,2,3,4,5}
∴(CUB)∩A={1,2}
故选:B.
点评 本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.
练习册系列答案
相关题目
5.过正方体ABCD-A1B1C1D1的顶点A的平面α与平面CB1D1平行,设α∩平面ABCD=m,α∩平面ABB1A1=n,那么m,n所成角的余弦值等于( )
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
6.已知f(x)=|xex|,又g(x)=f2(x)-tf(x)(t∈R),若满足g(x)=-1的x有四个,则t的取值范围是( )
| A. | $(-∞,-\frac{{{e^2}+1}}{e})$ | B. | $(\frac{{{e^2}+1}}{e},+∞)$ | C. | $(-\frac{{{e^2}+1}}{e},-2)$ | D. | $(2,\frac{{{e^2}+1}}{e})$ |
3.双曲线的顶点到渐进线的距离等于虚轴长的$\frac{1}{4}$,则此双曲线的离心率是( )
| A. | 2 | B. | $\frac{3}{2}$ | C. | 3 | D. | 4 |
10.已知集合M={x|x<2},$N=\left\{{\left.x\right|{3^x}>\frac{1}{3}}\right\}$,则M∩N=( )
| A. | ∅ | B. | {x|-1<x<2} | C. | {x|0<x<2} | D. | {x|1<x<2} |