ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖª|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬ÇÒ£¨$\overrightarrow{a}$+2$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$$-\overrightarrow{b}$£©=-2£¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦Ð£®·ÖÎö Ê×ÏÈÓÉÒÑÖªµÈʽÇó³öÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄÊýÁ¿»ý£¬ÀûÓÃÆ½ÃæÏòÁ¿µÄÊýÁ¿»ý¹«Ê½¿ÉµÃ£®
½â´ð ½â£ºÓÉÒÑÖª||$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬ÇÒ£¨$\overrightarrow{a}$+2$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$$-\overrightarrow{b}$£©=-2£¬
Ôò${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow{b}-2{\overrightarrow{b}}^{2}=-2$£¬ËùÒÔ$\overrightarrow{a}•\overrightarrow{b}$=-1£¬
ËùÒÔÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇµÄÓàÏÒֵΪ$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=-1£¬
ËùÒÔÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦Ð£®
¹Ê´ð°¸Îª£º¦Ð
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ý¹«Ê½µÄÔËÓã»ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+x+a£¬x£¼0}\\{-\frac{1}{x}£¬x£¾0}\end{array}\right.$Èôº¯Êýf£¨x£©µÄͼÏóÔÚµãA£¬B´¦µÄÇÐÏßÖØºÏ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨2£¬+¡Þ£© | B£® | £¨-¡Þ£¬$\frac{1}{4}$£© | C£® | £¨-2£¬$\frac{1}{4}$£© | D£® | £¨-¡Þ£¬-2£©¡È£¨$\frac{1}{4}$£¬+¡Þ£© |
14£®ÒÑÖªº¯Êýf£¨x£©=ex-ax2-x-1£¨a¡ÊR£©Ç¡ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¨ÆäÖÐx1£¼x2£©£¬ÇÒf£¨x2£©=0£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $£¨-¡Þ£¬\frac{1}{2}£©$ | B£® | £¨0£¬1£© | C£® | $£¨0£¬\frac{1}{2}£©$ | D£® | $£¨\frac{1}{2}£¬+¡Þ£©$ |