题目内容

7.圆C经过直线x+y-1=0与x2+y2=4的交点,且圆C的圆心为(-2,-2),则过点(2,4)向圆C作切线,所得切线方程为(  )
A.5x-12y+38=0B.5x+12y+38=0
C.5x-12y+38=0或x=2D.5x+12y+38=0或x=4

分析 联立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得交点,可得:圆C的标准方程为:(x+2)2+(y+2)2=16.过点(2,4)向圆C作切线,直线x=2时满足条件.切线斜率存在时,设切线方程为:y-4=k(x-2),即kx-y+4-2k=0,可得$\frac{|-2k+2+4-2k|}{\sqrt{{k}^{2}+1}}$=4,解得k即可得出.

解答 解:联立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1+\sqrt{7}}{2}}\\{y=\frac{1-\sqrt{7}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1-\sqrt{7}}{2}}\\{y=\frac{1+\sqrt{7}}{2}}\end{array}\right.$,
∴圆C的标准方程为:(x+2)2+(y+2)2=$(\frac{1+\sqrt{7}}{2}+2)^{2}$+$(\frac{1-\sqrt{7}}{2}+2)^{2}$=16.
过点(2,4)向圆C作切线,直线x=2时满足条件.
切线斜率存在时,设切线方程为:y-4=k(x-2),即kx-y+4-2k=0,
则$\frac{|-2k+2+4-2k|}{\sqrt{{k}^{2}+1}}$=4,解得k=$\frac{5}{12}$.可得切线方程为:5x-12y+38=0.
综上可得:切线方程方程为:5x-12y+38=0或x=2.
故选:C.

点评 本题考查了直线与圆相交交点、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网