题目内容

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$A({1,\frac{3}{2}})$,C的四个顶点构成的四边形面积为$4\sqrt{3}$.
(1)求椭圆C的方程;
(2)在椭圆C上是否存在相异两点E,F,使其满足:①直线AE与直线AF的斜率互为相反数;②线段EF的中点在y轴上.若存在,求出∠EAF的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.

分析 (1)由题意列关于a,b的方程组,求解可得a,b的值,则椭圆方程可求;
(2)由题意分别设出AE、AF所在直线方程,与椭圆方程联立求得E,F的横坐标,再由两点的中点在y轴上列式求得斜率,可得满足条件的E,F存在,进一步求出∠EAF的平分线方程,与椭圆联立求得弦长.

解答 解:(1)由已知得$\left\{\begin{array}{l}\frac{1}{a^2}+\frac{9}{{4{b^2}}}=1\\ ab=2\sqrt{3}\\ a>b>0\end{array}\right.$,解得a2=4,b2=3,
∴椭圆C的方程$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)设直线AE的方程为$y-\frac{3}{2}=k({x-1})$,代入$\frac{x^2}{4}+\frac{y^2}{3}=1$,得(3+4k2)x2+4k(3-2k)x+4k2-12k-3=0.①
设E(x1,y1),F(x2,y2),且x=1是方程①的根,
∴${x_1}=\frac{{4{k^2}-12k-3}}{{3+4{k^2}}}$,
用-k代替上式中的k,可得${x_2}=\frac{{4{k^2}+12k-3}}{{3+4{k^2}}}$,
∵E,F的中点在y轴上,∴x1+x2=0,
∴$\frac{{4{k^2}-12k-3}}{{3+4{k^2}}}+\frac{{4{k^2}+12k-3}}{{3+4{k^2}}}=0$,解得$k=±\frac{{\sqrt{3}}}{2}$,
因此满足条件的点E,F存在.
由平面几何知识可知∠EAF的角平分线方程为x=1.
把x=1代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,可得y=$±\frac{3}{2}$,
∴所求弦长为3.

点评 本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网