题目内容
10.设锐角△ABC的三个内角为A,B,C,其中角B的大小为$\frac{π}{6}$,则cosA+sinC的取值范围为($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).分析 推导出A+C=$\frac{5π}{6}$,从而$\frac{π}{3}$<A<$\frac{π}{2}$,$\frac{π}{3}$<C<$\frac{π}{2}$,进而cosA+sinC=cos($\frac{5π}{6}$-C)+sinC=-$\frac{\sqrt{3}}{2}$cosC+$\frac{3}{2}$sinC=$\sqrt{3}$sin(C-$\frac{π}{6}$),由此能求出cosA+sinC的取值范围.
解答 解:设锐角三角形ABC的三个内角分别为A,B,C,
则A+B+C=π,0<A<$\frac{π}{2}$,0<B<$\frac{π}{2}$,0<C<$\frac{π}{2}$,
∵B=$\frac{π}{6}$,∴A+C=$\frac{5π}{6}$,
∴$\frac{π}{3}$<A<$\frac{π}{2}$,$\frac{π}{3}$<C<$\frac{π}{2}$,
∴cosA+sinC=cos($\frac{5π}{6}$-C)+sinC=-$\frac{\sqrt{3}}{2}$cosC+$\frac{1}{2}$sinC+sinC=-$\frac{\sqrt{3}}{2}$cosC+$\frac{3}{2}$sinC,
∵-$\frac{\sqrt{3}}{2}$cosC+$\frac{3}{2}$sinC=$\sqrt{3}$(sinCcos$\frac{π}{6}$-cosCsin$\frac{π}{6}$)=$\sqrt{3}$sin(C-$\frac{π}{6}$),
又$\frac{π}{3}$<C<$\frac{π}{2}$,
∴$\frac{1}{2}$=sin$\frac{π}{2}$<sin(C-$\frac{π}{6}$)<sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{3}}{2}$<cosA+sinC<$\frac{3}{2}$,
cosA+sinC的取值范围是$(\frac{{\sqrt{3}}}{2},\frac{3}{2})$.
故答案为:$(\frac{{\sqrt{3}}}{2},\frac{3}{2})$.
点评 本题考查三角函数值的和的取值范围的求法,是中档题,解题时要认真审题,注意三函数数两角和与差的性质的合理运用.
| A. | -4 | B. | 4 | C. | -5 | D. | 5 |
| A. | 3件都是正品 | B. | 至少有1件次品 | C. | 3件都是次品 | D. | 至少有1件正品 |
| A. | $2\sqrt{2}$ | B. | 1+$2\sqrt{2}$ | C. | 2+$2\sqrt{2}$ | D. | 3+$2\sqrt{2}$ |