题目内容
圆(x-4)2+(y-1)2=5内一点P(3,0),则过点P的最短弦所在直线方程为
x+y-3=0
x+y-3=0
.分析:由已知中P(3,0)是圆(x-4)2+(y-1)2=5内一点,由垂径定理可得,过P点的最短弦所在直线与过P点的直径垂直,由圆的方程求出圆心坐标后,可以求出过P点的直径的斜率,进而求出过P点的最短弦所在直线的斜率,利用点斜式,可以得到过P点的最短弦所在直线的方程,但结果要化为一般式的形式.
解答:解:由圆的标准方程:(x-4)2+(y-1)2=5
即圆的圆心坐标为(4,1),
则过P点的直径所在直线的斜率为1,
由于过P点的最短弦所在直线与过P点的直径垂直
∴过P点的最短弦所在直线的斜率为-1,
∴过P点的最短弦所在直线的方程y=-1(x-3),即x+y-3=0
故答案为:x+y-3=0.
即圆的圆心坐标为(4,1),
则过P点的直径所在直线的斜率为1,
由于过P点的最短弦所在直线与过P点的直径垂直
∴过P点的最短弦所在直线的斜率为-1,
∴过P点的最短弦所在直线的方程y=-1(x-3),即x+y-3=0
故答案为:x+y-3=0.
点评:本题考查的知识点是直线与圆相交的性质,其中由垂径定理,判断出过P点的最短弦所在直线与过P点的直径垂直是解答本题的关键,另外求直线方程最后要将结果化为一般式的形式,这是本题中易忽略的地方.
练习册系列答案
相关题目
由直线y=x+2上的点向圆(x-4)2+(y+2)2=1引切线,则切线长的最小值为( )
A、
| ||
B、
| ||
C、4
| ||
D、
|
已知二元一次不等式组
所表示的平面区域为M,若M与圆(x-4)2+(y-1)2=a(a>0)至少有两个公共点,则实数a的取值范围是( )
|
A、(
| ||||
B、(1,
| ||||
C、(
| ||||
D、(
|