题目内容
已知a>b>1.若logab+logba=,ab=ba,则a= ,b= .
设f(x)=xlnx–ax2+(2a–1)x,a∈R.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
设函数f(x)=ax2-a-lnx,=,其中a∈R,e=2.718…为自然对数的底数。
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立。
为了得到函数y=sin的图象,只需把函数y=sinx的图象上所有的点
(A)向左平行移动个单位长度
(B)向右平行移动个单位长度
(C)向上平行移动个单位长度
(D)向下平行移动个单位长度
如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:EF⊥平面ACFD;
(Ⅱ)求二面角B-AD-F的平面角的余弦值.
已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1
设函数=,.证明:
(Ⅰ);
(Ⅱ).
函数y=sinx2的图象是( )
已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程恰好有两个不相等的实数解,则a的取值范围是( )
(A)(0,] (B)[,] (C)[,]{}(D)[,){}