题目内容
19.直线l1:ax-3y+1=0,l2:2x+(a+1)y+1=0,若l1⊥l2,则a=( )| A. | 3 | B. | -3 | C. | -3或2 | D. | 3或-2 |
分析 由直线垂直的性质得两直线中x,y的系数乘积之和为0,由此能求出结果.
解答 解:∵直线l1:ax-3y+1=0,l2:2x+(a+1)y+1=0,
l1⊥l2,
∴2a+(-3)(a+1)=0,
解得a=-3.
故选:B.
点评 本题考查直线中参数值的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.
练习册系列答案
相关题目
7.某企业生产某种产品,在2011年至2015年所获利润(单位:十万元)的数据如下表:
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该企业所获利润的变化情况,并预测该企业在2016年的所获利润.附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 年份代号t | 1 | 2 | 3 | 4 | 5 |
| 利润y | 5.8 | 6.6 | 7.1 | 7.4 | 8.1 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该企业所获利润的变化情况,并预测该企业在2016年的所获利润.附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.
8.将函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,函数g(x)的相邻的两个极值点的距离等于$\frac{π}{2}$,则g(x)的单调递减区间是( )
| A. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z | B. | [kπ+$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z | ||
| C. | [2kπ+$\frac{5π}{12}$,2kπ+$\frac{11π}{12}$],k∈Z | D. | [2kπ-$\frac{π}{12}$,2kπ+$\frac{5π}{12}$],k∈Z |
9.若$\root{n}{a}$=-$\root{n}{a}$,则( )
| A. | a=0 | B. | a≠0 | C. | a≤0 | D. | a≥0 |