题目内容

7.在正四面体ABCD中,平面ABC内动点P满足其到平面BCD距离与到A点距离相等,则动点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

分析 将点P到平面ABC距离与到点A的距离相等转化成在面ABC中点P到A的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.

解答 解:设二面角A-BC-D的平面角为θ,点P到平面BCD的距离为|PH|,
点P到定直线CB的距离为d,则|PH|=dsinθ
∵点P到平面BCD的距离与点P到点A的距离相等
∴dsinθ=|PA|
∴$\frac{|PA|}{d}$<1
即在平面ABC中,点P到定点A的距离与定直线BC的距离之比是一个小于1的常数sinθ,
由椭圆定义知P点轨迹为椭圆在面ABC内的一部分.
故选B.

点评 本题主要考查立体几何中的轨迹问题,解题的关键是将点P到平面ABC距离与到点A的距离相等转化成在面ABC中点P到A的距离与到定直线BC的距离比是一个常数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网