题目内容

10.设数列{an}前n项和为Sn,且Sn+an=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=a1,bn=$\frac{3{b}_{n-1}}{{b}_{n-1}+3}$,n≥2 求证{$\frac{1}{{b}_{n}}$}为等差数列,并求数列{bn}的通项公式;
(Ⅲ)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n和Tn

分析 (Ⅰ)由数列递推式可得Sn+1+an+1=2,与原数列递推式作差可得数列{an}是等比数列,则数列{an}的通项公式可求;
(Ⅱ)由b1=a1求得b1,把bn=$\frac{3{b}_{n-1}}{{b}_{n-1}+3}$变形可得{$\frac{1}{{b}_{n}}$}为等差数列,求其通项公式后可得数列{bn}的通项公式;
(Ⅲ)把{an},{bn}的通项公式代入cn=$\frac{{a}_{n}}{{b}_{n}}$,利用错位相减法求数列{cn}的前n和Tn

解答 (Ⅰ)解:由Sn+an=2,得Sn+1+an+1=2,两式相减,得2an+1=an,∴$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1}{2}$(常数),
∴数列{an}是等比数列,
又n=1时,S1+a1=2,∴${a}_{n}=\frac{1}{{2}^{n-1}}$;
(Ⅱ)证明:由b1=a1=1,且n≥2时,bn=$\frac{3{b}_{n-1}}{{b}_{n-1}+3}$,得bnbn-1+3bn=3bn-1
∴$\frac{1}{{b}_{n}}-\frac{1}{{b}_{n-1}}=\frac{1}{3}$,
∴{$\frac{1}{{b}_{n}}$}是以1为首项,$\frac{1}{3}$为公差的等差数列,
∴$\frac{1}{{b}_{n}}=1+\frac{n-1}{3}=\frac{n+2}{3}$,故${b}_{n}=\frac{3}{n+2}$;
(Ⅲ)解:cn=$\frac{{a}_{n}}{{b}_{n}}$=$\frac{n+2}{3}•(\frac{1}{2})^{n-1}$,
${T}_{n}=\frac{1}{3}[3•(\frac{1}{2})^{0}+4•(\frac{1}{2})^{1}+…+(n+2)•(\frac{1}{2})^{n-1}]$,
$\frac{1}{2}{T}_{n}=\frac{1}{3}[3•(\frac{1}{2})^{1}+4•(\frac{1}{2})^{2}+…+(n+1)•(\frac{1}{2})^{n-1}+(n+2)•(\frac{1}{2})^{n}]$,
以上两式相减得,
$\frac{1}{2}{T}_{n}=\frac{1}{3}[3+(\frac{1}{2})^{1}+(\frac{1}{2})^{2}+…+(\frac{1}{2})^{n-1}-(n+2)•(\frac{1}{2})^{n}]$
=$\frac{1}{3}[3+\frac{\frac{1}{2}[1-(\frac{1}{2})^{n-1}]}{1-\frac{1}{2}}-(n+2)•(\frac{1}{2})^{n}]$
=$\frac{1}{3}[4-(\frac{1}{2})^{n-1}-(n+2)•(\frac{1}{2})^{n}]$.
∴${T}_{n}=\frac{8}{3}-\frac{n+4}{3•{2}^{n-1}}$.

点评 本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的和,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网