题目内容
18.给定正奇数n,数列{an}:a1,a2,…,an是1,2,…,n的一个排列,定义E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|为数列{an}:a1,a2,…,an的位差和.(Ⅰ)当n=5时,则数列{an}:1,3,4,2,5的位差和为4;
(Ⅱ)若位差和E(a1,a2,…,an)=4,则满足条件的数列{an}:a1,a2,…,an的个数为$\frac{{({n-2})({n+3})}}{2}$.;(用n表示)
分析 (Ⅰ)把a1,a3,a4,a2,a5分别代入E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|进行解答即可;
(Ⅱ)分两种情况进行讨论:当ai=i+1,ai+1=i,aj=j+1,aj+1=j,且{ai,ai+1}∩{aj,aj+1}=∅,其他项ak=k(其中k∉{i,i+1,j,j+1})时和当ai,ai+1,ai+2分别等于i+2,i+1,i或i+1,i+2,i或i+2,i+1,其他项ak=k(其中k∉{i,i+1,i+2});
解答 解:(I)E(1,3,4,2,5)=|1-1|+|3-2|+|4-3|+|2-4|+|5-5|=4;
(II)若数列{an}:a1,a2,…,an的位差和E(a1,a2,…,an)=4,有如下两种情况:
情况一:当ai=i+1,ai+1=i,aj=j+1,aj+1=j,且{ai,ai+1}∩{aj,aj+1}=∅,
其他项ak=k(其中k∉{i,i+1,j,j+1})时,
有(n-3)+(n-4)+…+2+1=$\frac{(n-2)(n-3)}{2}$种可能;
情况二:当ai,ai+1,ai+2分别等于i+2,i+1,i或i+1,i+2,i或i+2,i+1,
其他项ak=k(其中k∉{i,i+1,i+2})时,有3(n-2)种可能;
综上,满足条件的数列{an}:a1,a2,…,an的个数为$\frac{(n-2)(n-3)}{2}$+3(n-2)=$\frac{{({n-2})({n+3})}}{2}$.
故答案为:(I)4;(II)$\frac{{({n-2})({n+3})}}{2}$
点评 本题考查了新定义“位差和”、等差数列的前n项和公式、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.已知函数f(x)=$\left\{{\begin{array}{l}{(2-a)x+3a,x<1}\\{{{log}_2}x,x≥1}\end{array}}\right.$的值域为R,则实数a的取值范围是( )
| A. | (-1,2) | B. | [-1,2) | C. | (-∞,-1] | D. | {-1} |