题目内容
1.已知函数f(x)=ln(1+x)-$\frac{x(1+λx)}{1+x}$.若x≥0时,f(x)≤0,求λ的最小值.分析 由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值.
解答 解:由已知,f(0)=0,f′(x)=$\frac{(1-2λ)x-{λx}^{2}}{{(1+x)}^{2}}$,且f′(0)=0,
若λ<$\frac{1}{2}$,则当0<x<2(1-2λ)时,f′(x)>0,所以当0<x<2(1-2λ)时,f(x)>0,
若λ≥$\frac{1}{2}$,则当x≥0时,f′(x)≤0,所以当x≥0时,f(x)≤0,
综上,λ的最小值为$\frac{1}{2}$.
点评 本题考查导数知识的运用,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关题目
6.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-(x-1)^{2}},(0≤x<2)}\\{f(x-2),(x≥2)}\end{array}\right.$,若函数F(x)=f(x)-kx(k>0),有且仅有四个零点,则实数k的取值范围为( )
| A. | ($\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$) | B. | ($\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{2}$) | C. | ($\frac{\sqrt{6}}{12},\frac{\sqrt{2}}{4}$) | D. | ($\frac{\sqrt{3}}{13},\frac{\sqrt{6}}{12}$) |
11.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=5,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于( )
| A. | 5$\sqrt{3}$ | B. | $\frac{5\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | 5 |