题目内容
已知a、b、c∈R且a>b,则下列不等式正确的是( )
| A、a+c>b+c |
| B、a+c<b+c |
| C、a+c≥b+c |
| D、a+c≤b+c |
考点:不等关系与不等式
专题:不等式的解法及应用
分析:直接利用不等式的基本性质判断即可.
解答:
解:a、b、c∈R且a>b,所以a+c>b+c正确;a+c<b+c错误;a+c≥b+c错误;a+c≤b+c错误;
故选:A.
故选:A.
点评:本题考查不等式的基本性质的应用,基本知识的考查.
练习册系列答案
相关题目
已知x与y之间的一组数据:
则y与x的线性回归方程
=bx+a所表示的直线必过点( )
| x | 0 | 1 | 2 | 3 |
| y | 1.1 | 3.1 | 4.9 | 6.9 |
| y |
| A、(2,2) |
| B、(1.5,3.5) |
| C、(1,2) |
| D、(1.5,4) |
已知平面向量|
|=|
|=1,∠AOB=60°,且(
-
)•(2
-
)=0,则|
|的取值范围是( )
| OA |
| OB |
| OA |
| OC |
| OB |
| OC |
| OC |
A、[0,
| ||||||||||||
B、[
| ||||||||||||
C、[1,
| ||||||||||||
D、[
|
设2≤x≤y≤z≤t≤25,则
+
的最小值是( )
| x |
| y |
| z |
| t |
| A、2 | ||||
B、
| ||||
C、
| ||||
D、
|
已知p:
≤x≤1,q:x2-(a+1)x+a≤0,若a<
,则p是q的( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
设集合A={x|x≤0},则下列四个关系中正确的是( )
| A、0∈A | B、0∉A |
| C、{0}∈A | D、0⊆A |
α,β是两个不同的平面,则下列命题中错误的是( )
| A、若α∥β,则α内一定存在直线平行于β |
| B、若α∥β,则α内一定存在直线垂直于β |
| C、若α⊥β,则α内一定存在直线平行于β |
| D、若α⊥β,则α内一定存在直线垂直于β |