题目内容

4.已知曲线y=2x2+1过点(1,3),则该曲线在该点处的切线方程为(  )
A.y=-4x-1B.y=4x-1C.y=4x-11D.y=-4x+7

分析 欲求在点(1,3)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=-1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答 解:∵y=2x2+1,∴y′=4x,
∴x=1时,y′=4,
∴曲线y=2x2+1在点P(1,3)处的切线方程为:y-3=4×(x-1),即y=4x-1,
故选:B.

点评 本题主要考查直线的斜率、直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网