题目内容
定义在R上的偶函数在[0,7]上是减函数,则f(x)( )
| A、在[-7,0]上是增函数 |
| B、在[-7,0]上是减函数 |
| C、在[7,+∞)上是减函数 |
| D、在[-7,7]是增函数 |
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:利用偶函数的图象关于y轴对称即可得出.
解答:
解:∵定义在R上的偶函数在[0,7]上是减函数,偶函数的图象关于y轴对称,
∴f(x)在[-7,0]上是增函数.
故选:A.
∴f(x)在[-7,0]上是增函数.
故选:A.
点评:本题考查了偶函数的图象关于y轴对称、单调性,属于基础题.
练习册系列答案
相关题目
若实数x、y满足约束条件
,则目标函数z=x+y的最大值为( )
|
| A、2 | B、3 | C、4 | D、1 |
过点(2,1)并与两坐标轴都相切的圆的方程是( )
| A、(x-1)2+(y-1)2=1 |
| B、(x-1)2+(y-1)2=1或(x-5)2+(y-5)2=5 |
| C、(x-1)2+(y-1)2=1或(x-5)2+(y-5)2=25 |
| D、(x-5)2+(y-5)2=5 |
方程sinx=lg|x|实根的个数为( )
| A、6 | B、5 | C、4 | D、3 |
方程sinπx=-
x的解的个数是( )
| 1 |
| 4 |
| A、5 | B、6 | C、7 | D、8 |
已知向量
={1,2,3},
={3,0,-1},
={-
,1,-
},有下列结论:
①|
+
+
|=|
-
-
|;
②(
+
+
)2=
2+
2+
2;
③(
•
)
=
(
•
);
④(
+
)•
=
•(
-
).
其中正确的结论的个数有( )
| a |
| b |
| c |
| 1 |
| 5 |
| 3 |
| 5 |
①|
| a |
| b |
| c |
| a |
| b |
| c |
②(
| a |
| b |
| c |
| a |
| b |
| c |
③(
| a |
| b |
| c |
| a |
| b |
| c |
④(
| a |
| b |
| c |
| a |
| b |
| c |
其中正确的结论的个数有( )
| A、4个 | B、3个 | C、2个 | D、1个 |
命题“若a>0,则ac2≥0”的逆命题是( )
| A、若a>0,则ac2<0 |
| B、若ac2≥0,则a>0 |
| C、若ac2<0,则a≤0 |
| D、若a≤0,则ac2<0 |
定义域为R的函数y=f(x)的值域为[a,b],则函数y=f(x-3a)的值域为( )
| A、[2a,a+b] |
| B、[0,b-a] |
| C、[a,b] |
| D、[-a,a+b] |