题目内容

11.已知数列{an}是首项为4,公差为3的等差数列,数列{bn}满足bn(an$\sqrt{{a}_{n+1}}$+an+1$\sqrt{{a}_{n}}$)=1,则数列{bn}的前32项的和为$\frac{2}{15}$.

分析 通过等差数列{an}的首项和公差可知an=3n+1,利用平方差公式、裂项可知bn=$\frac{1}{3}$($\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$),进而并项相加即得结论.

解答 解:∵数列{an}是首项为4、公差为3的等差数列,
∴an=4+3(n-1)=3n+1,
∵bn(an$\sqrt{{a}_{n+1}}$+an+1$\sqrt{{a}_{n}}$)=1,
∴bn=$\frac{1}{\sqrt{{a}_{n}{a}_{n+1}}(\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}})}$=$\frac{1}{3}$•$\frac{\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n}{a}_{n+1}}}$=$\frac{1}{3}$($\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$),
∴数列{bn}的前n项和为$\frac{1}{3}$($\frac{1}{\sqrt{{a}_{1}}}$-$\frac{1}{\sqrt{{a}_{2}}}$+$\frac{1}{\sqrt{{a}_{2}}}$-$\frac{1}{\sqrt{{a}_{3}}}$+…+$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$)
=$\frac{1}{3}$($\frac{1}{\sqrt{{a}_{1}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$)
=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{\sqrt{3n+4}}$),
故所求值为$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{\sqrt{3×32+4}}$)=$\frac{2}{15}$,
故答案为:$\frac{2}{15}$.

点评 本题考查数列的通项及前n项和,涉及平方差公式、裂项相消法等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网