题目内容
13.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.(1)求Sn;
(2)令${b_n}=\frac{1}{S_n}$(n∈N+),求数列{bn}的前n项和Tn.
分析 (1)设等差数列{an}的公差为d,由a3=7,a5+a7=26,可得a1+2d=7,2a1+10d=26,即可得出.
(2)${b_n}=\frac{1}{S_n}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,利用裂项求和方法即可得出.
解答 解:(1)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,
∴a1+2d=7,2a1+10d=26,
联立解得a1=3,d=2,
∴{an}的前n项和为Sn=3n+$\frac{n(n-1)}{2}×2$=n(n+2).
(2)${b_n}=\frac{1}{S_n}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
点评 本题考查了等差数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
3.下列四个命题:
①“等边三角形的三个内角均为60°”的逆命题
②“全等三角形的面积相等”的否命题
③“若k>0,则方程x2+2x-k=0有实根”的逆否命题
④“若ab≠0,则a≠0”的否命题
其中真命题的个数是( )
①“等边三角形的三个内角均为60°”的逆命题
②“全等三角形的面积相等”的否命题
③“若k>0,则方程x2+2x-k=0有实根”的逆否命题
④“若ab≠0,则a≠0”的否命题
其中真命题的个数是( )
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
4.若点P为角-$\frac{2017π}{3}$的终边与单位圆的交点,则P点的坐标为( )
| A. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | ($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | ($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) |
1.若a>b>0,c<d<0,则一定有( )
| A. | $\frac{a}{d}$>$\frac{b}{c}$ | B. | $\frac{a}{c}$<$\frac{b}{c}$ | C. | $\frac{a}{c}$>$\frac{b}{d}$ | D. | $\frac{a}{c}$<$\frac{b}{d}$ |
18.下列各数中,与cos1030°相等的是( )
| A. | cos 50° | B. | -cos 50° | C. | sin 50° | D. | -sin 50° |
5.
如图所示,边长为4的正方形中有一封闭心形曲线围成的阴影区域,在正方形中,随机撒一粒豆子,它落在阴影区域内的概率约为$\frac{1}{4}$,则阴影区域的面积约为( )
| A. | 4 | B. | 8 | C. | 12 | D. | 16 |
3.下列式子中,不能化简为$\overrightarrow{PQ}$的是( )
| A. | $\overrightarrow{AB}+\overrightarrow{PA}+\overrightarrow{BQ}$ | B. | $\overrightarrow{AB}+\overrightarrow{PC}+\overrightarrow{BA}-\overrightarrow{QC}$ | C. | $\overrightarrow{PA}+\overrightarrow{AB}-\overrightarrow{BQ}$ | D. | $\overrightarrow{QC}+\overrightarrow{CQ}-\overrightarrow{QP}$ |