题目内容
12.Rt△ABC中,斜边BC为4,以BC中点为圆心,作半径为1的圆,分别交BC于P、Q两点,则|AP|2+|AQ|2+|PQ|2的值为( )| A. | 4+$\sqrt{17}$ | B. | 3+$2\sqrt{5}$ | C. | $\frac{19}{2}$ | D. | 14 |
分析 利用余弦定理,求出|AP|2、|AQ|2,结合∠AOP+∠AOQ=180°,即可求|AP|2+|AQ|2+|PQ|2的值.
解答 解:由题意,OA=OB=2,OP=OQ=1
△AOP中,根据余弦定理AP2=OA2+OP2-2OA•OPcos∠AOP
同理△AOQ中,AQ2=OA2+OQ2-2OA•OQcos∠AOQ
因为∠AOP+∠AOQ=180°,
所以|AP|2+|AQ|2+|PQ|2=2OA2+2OP2+PQ2=2×22+2×12+(2×1)2=14.
故选:D.
点评 本题考查直线与圆的位置关系的应用,是中档题,解题时要认真审题,注意余弦定理的合理运用.
练习册系列答案
相关题目
19.已知A(2,-5,1),B(1,-4,1),C(2,-2,4),则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |