题目内容
2.(1)求证:MN∥平面BB1C1C;
(2)求MN的长的最小值.
分析 (1)以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立空间直角坐标系,利用向量法能证明MN∥平面BB1C1C.
(2)由$\overrightarrow{MN}$=(-$\frac{\sqrt{2}b}{2}$,0,a-$\frac{\sqrt{2}b}{2}$),利用配方法能求出b=$\frac{\sqrt{2}}{2}a$时,MN的长取最小值$\frac{\sqrt{2}}{2}a$.
解答
证明:(1)以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立空间直角坐标系,
设A1M=AN=b,则M(a,$\frac{\sqrt{2}b}{2}$,$\frac{\sqrt{2}b}{2}$),N(a-$\frac{\sqrt{2}b}{2}$,$\frac{\sqrt{2}b}{2}$,a),
$\overrightarrow{MN}$=(-$\frac{\sqrt{2}b}{2}$,0,a-$\frac{\sqrt{2}b}{2}$),
∵平面BB1C1C的法向量$\overrightarrow{n}$=(0,1,0),
∴$\overrightarrow{MN}•\overrightarrow{n}$=0,又MN?平面BB1C1C,∴MN∥平面BB1C1C.
解:(2)∵$\overrightarrow{MN}$=(-$\frac{\sqrt{2}b}{2}$,0,a-$\frac{\sqrt{2}b}{2}$),
∴|$\overrightarrow{MN}$|=$\sqrt{\frac{2{b}^{2}}{4}+({a}^{2}-\sqrt{2}ab+\frac{2{b}^{2}}{4})}$=$\sqrt{{a}^{2}+{b}^{2}-\sqrt{2}ab}$=$\sqrt{(b-\frac{\sqrt{2}}{2}a)^{2}+\frac{{a}^{2}}{2}}$,
∴b=$\frac{\sqrt{2}}{2}a$时,MN的长取最小值$\frac{\sqrt{2}}{2}a$.
点评 本题考查线面平行的证明,考查线段长的最小值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
| A. | 4+$\sqrt{17}$ | B. | 3+$2\sqrt{5}$ | C. | $\frac{19}{2}$ | D. | 14 |
| A. | $\frac{π}{4}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{π}{3}$ |