题目内容

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=
2
,AB=1
,E是DD1的中点.
(1)求证:AC⊥B1D;
(2)求二面角E-AC-B的大小.
(本小题满分14分)
解法一:
(1)证明:连接BD.
∵ABCD-A1B1C1D1是正四棱柱,∴B1B⊥平面ABCD,
∴BD是B1D在平面ABCD上的射影,….(2分)
∵底面ABCD是正方形,∴AC⊥BD,….(4分)
根据三垂线定理∴AC⊥B1D.…..(6分)
(2)设AC∩BD=F,连接EF.∵DE⊥平面ABCD,且AC⊥BD,…(7分)
根据三垂线定理得AC⊥FE,又AC⊥FB,∴∠EFB是二面角E-AC-B的平面角.…..(9分)
在Rt△EDF中,由DE=DF=
2
2
,得∠EFD=45°.…..(12分)
∴∠EFB=180°-45°=135°,…(13分)
即二面角E-AC-B的大小是135°.…..(14分)

解法二:∵ABCD-A1B1C1D1是正四棱柱,∴DA、DC、DD1两两互相垂直
如图,以D为原点,直线DA,DC,DD1分别为x轴,y轴,z轴,建立空间直角坐标系.….(1分)
D(0,0,0),A(1,0,0),B(1,1,0),
C(0,1,0),B1(1,1,
2
)
…..(3分)
(1)证明:
AC
=(-1,1,0),
DB1
=(1,1,
2
)
….(4分)
AC
DB1
=0
,∴AC⊥B1D.…..(6分)

(2)
连接BD,设AC∩BD=F,连接EF.
∵DE⊥平面ABCD,且AC⊥BD∴AC⊥FE,AC⊥FB…(8分)
∴∠EFB是二面角E-AC-B的平面角.…..(9分)
∵底面ABCD是正方形
F(
1
2
1
2
,0)
,∴
FB
=(
1
2
1
2
,0),
FE
=(-
1
2
,-
1
2
2
2
)
,.….(11分)
…..(13分)
cos<
FB
FE
>=
FB
FE
|
FB
||
FE
|
=-
2
2
…(13分)

∴二面角E-AC-B的大小是135°.…..(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网