题目内容

如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点B1在底面上的射影D落在BC上.
(1)求证:AC⊥平面BB1C1C;
(2)当α为何值时,AB1⊥BC1,且使点D恰为BC中点?
(3)(理科做)当α=arccos
1
3
,且AC=BC=AA1时,求二面角C1-AB-C的大小.
(1)证明:∵B1D⊥平面ABC,AC?平面ABC,∴B1D⊥AC
又∵BC⊥AC,B1D∩BC=D,
∴AC⊥平面BB1C1C;
(2)∵B1D⊥面ABC,
∴B1D⊥AC,
又∵AC⊥BC,BC∩B1D=D,
∴AC⊥面BB1C1C.
∵AB1⊥BC1
∴由三垂线定理可知,B1C⊥BC1,即平行四边形BB1C1C为菱形,
又∵B1D⊥BC,且D为BC的中点,
∴B1C=B1B,即△BB1C为正三角形,
∴∠B1BC=60°,
∵B1D⊥面ABC,且点D落在BC上,
∴∠B1BC即为侧棱与底面所成的角,
∴α=60°.
(3)C1作C1E⊥BC,垂足为E,则C1E⊥平面ABC.过E作EF⊥AB,垂足为F,由三垂线定理得C1E⊥AB.
∴根据二面角平面角的定义可得:∠C1FE是所求二面角C1-AB-C的平面角.
设AC=BC=A1A=a,
在Rt△CC1E中,由∠C1CE=α=arccos
1
3
,可得C1E=
2
2
3
a,
∴在Rt△BEF中,∠EBF=45°,EF=
2
2
BE=
2
2
3
a,
∴∠C1FE=45°.
故所求的二面角C1-AB-C为45°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网