题目内容
已知数列{an}满足a1=-1,an+1=3an+2n,求an.
考点:数列递推式
专题:计算题,等差数列与等比数列
分析:由an+1=3an+2n,可得an+1+n+1+
=3(an+n+
),数列{an+n+
}是以
为首项,3为公比的等比数列,即可得出结论.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:∵an+1=3an+2n,
∴an+1+n+1+
=3(an+n+
),
∵a1=-1,
∴a1+1+
=
,
∴数列{an+n+
}是以
为首项,3为公比的等比数列,
∴an+n+
=
•3n-1,
∴an=
•3n-1-n-
.
∴an+1+n+1+
| 1 |
| 2 |
| 1 |
| 2 |
∵a1=-1,
∴a1+1+
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{an+n+
| 1 |
| 2 |
| 1 |
| 2 |
∴an+n+
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
点评:本题考查数列递推式,考查数列的通项,确定数列{an+n+
}是以
为首项,3为公比的等比数列是关键.
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目