题目内容

18.已知函数f(x)在(-∞,+∞)上是偶函数,且f(x)在(-∞,0)上是减函数,试比较f(-$\frac{3}{4}$)与f(a2-a+1)的大小.

分析 利用函数奇偶性和单调性的关系进行比较大小即可.

解答 解:${a^2}-a+1={(a-\frac{1}{2})^2}+\frac{3}{4}≥\frac{3}{4}$,
∵f(x)在(-∞,+∞)上是偶函数,且f(x)在(-∞,0)上是减函数,
∴f(x)在(0,+∞)是增函数,
∴f(a2-a+1)≥$f(\frac{3}{4})=f(-\frac{3}{4})$,
即f(-$\frac{3}{4}$)≤f(a2-a+1).

点评 本题主要考查函数值的大小比较,利用配方法,结合函数奇偶性和单调性的性质是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网