ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³Ì$¦Ñ=2cos£¨¦È+\frac{¦Ð}{4}£©$£®£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèMΪÇúÏßCÉÏÈÎÒâÒ»µã£¬Çóx+yµÄȡֵ·¶Î§£®
·ÖÎö £¨¢ñ£©°ÑÇúÏßCµÄ²ÎÊý·½³ÌºÍÖ±ÏßlµÄ¼«×ø±ê·½³Ì·Ö±ð»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬
£¨¢ò£©Éè$M£¨\frac{{\sqrt{2}}}{2}+cos¦È£¬-\frac{{\sqrt{2}}}{2}+sin¦È£©$£¬¸ù¾ÝÈý½ÇÐκ¯ÊýµÄȡֵ·¶Î§µÃµ½x+yµÄȡֵ·¶Î§£®
½â´ð £¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÏûÈ¥t£¬
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪ$x-y+4\sqrt{2}=0$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³Ì$¦Ñ=2cos£¨¦È+\frac{¦Ð}{4}£©$£®
¡àÇúÏßCµÄÖ±½Ç×ø±êϵÏµķ½³ÌΪ${£¨x-\frac{{\sqrt{2}}}{2}£©^2}+{£¨y+\frac{{\sqrt{2}}}{2}£©^2}=1$£¬
£¨¢ò£©Éè$M£¨\frac{{\sqrt{2}}}{2}+cos¦È£¬-\frac{{\sqrt{2}}}{2}+sin¦È£©$£¬
Ôòx+y=cos¦È+sin¦È=$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©¡Ê[-$\sqrt{2}$£¬$\sqrt{2}$]£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌºÍ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÒÔ¼°Èý½Çº¯ÊýµÄÖµÓò£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | {£¨0£¬1£©} | B£® | £¨0£¬1£© | C£® | [-1£¬+¡Þ£© | D£® | [1£¬+¡Þ£© |
| A£® | -3i | B£® | -6 | C£® | -6i | D£® | 3i |