题目内容
8.在${(\sqrt{x}+\frac{a}{x})^6}(a>0)$的展开式中常数项的系数是60,则a的值为2.分析 利用通项公式即可得出.
解答 解:Tr+1=${∁}_{6}^{r}$$(\sqrt{x})^{6-r}(\frac{a}{x})^{r}$=ar${∁}_{6}^{r}{x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2.
∴${a}^{2}{∁}_{6}^{2}$=60,a>0,解得a=2.
故答案为:2.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
16.设集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},则.( )
| A. | M=N | B. | M?N | C. | N?M | D. | M∩N=∅ |
3.已知$\overline z$是z的共轭复数,若$\overline z+z=2,(\overline z-z)i=2$(其中i为虚数单位),则z的值为( )
| A. | 1-i | B. | -1-i | C. | -1+i | D. | 1+i |
20.设p:x<2,q:-2<x<2,则p是q成立的( )
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
17.
如图,梯形A1B1C1D1是一平面图形ABCD的直观图(斜二测),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,则原平面图形ABCD的面积是( )
| A. | 14. | B. | 7 | C. | $14\sqrt{2}$ | D. | $7\sqrt{2}$ |