题目内容
已知cosα=
,cos(α-β)=
,且0<β<α<
(Ⅰ) 求
的值;
(Ⅱ)求cosβ及角β的值.
| 1 |
| 7 |
| 13 |
| 14 |
| π |
| 2 |
(Ⅰ) 求
cos(π+2α)tan(π-2α)sin(
| ||
cos(
|
(Ⅱ)求cosβ及角β的值.
(Ⅰ)∵cosα=
,∴
=
=-cos2α=-2cos2α+1=
.
(Ⅱ)∵cos(α-β)=
,0<β<α<
,∴sin(α-β)=
,sinα=
.
cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=
×
+
×
=
,∴β=
.
| 1 |
| 7 |
cos(π+2α)tan(π-2α)sin(
| ||
cos(
|
| -cos2α•(-tan2α)cos2α |
| -sin2α |
| 47 |
| 49 |
(Ⅱ)∵cos(α-β)=
| 13 |
| 14 |
| π |
| 2 |
3
| ||
| 14 |
4
| ||
| 7 |
cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=
| 1 |
| 7 |
| 13 |
| 14 |
4
| ||
| 7 |
3
| ||
| 14 |
| 1 |
| 2 |
| π |
| 3 |
练习册系列答案
相关题目