题目内容

4.已知$\overrightarrow a$=(2,1),
(1)如果|$\overrightarrow b$|=$2\sqrt{5}$,且向量$\overrightarrow a$与$\overrightarrow b$共线,求$\overrightarrow b$的坐标表示;
(2)如果|$\overrightarrow b$|=$2\sqrt{10}$,且向量$\overrightarrow a$与$\overrightarrow b$夹角为$\frac{3π}{4}$,求$\overrightarrow b$的坐标表示.

分析 (1)设$\overrightarrow{b}=(x,y)$,由向量的模及斜率共线列关于x,y的方程组求解;
(2)设$\overrightarrow{b}=(x,y)$,由向量的模及斜率夹角列关于x,y的方程组求解.

解答 解:(1)设$\overrightarrow{b}=(x,y)$,由|$\overrightarrow b$|=$2\sqrt{5}$,且向量$\overrightarrow a$与$\overrightarrow b$共线,
得$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=20}\\{2y-x=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-4}\\{y=-2}\end{array}\right.$.
∴$\overrightarrow b=(4,2)$或$\overrightarrow b=(-4,-2)$;
(2)设$\overrightarrow{b}=(x,y)$,由|$\overrightarrow b$|=$2\sqrt{10}$,且向量$\overrightarrow a$与$\overrightarrow b$夹角为$\frac{3π}{4}$,
得$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=40}\\{\frac{2x+y}{\sqrt{5}•\sqrt{{x}^{2}+{y}^{2}}}=-\frac{\sqrt{2}}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-6}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=-6}\end{array}\right.$.
∴$\overrightarrow b=(-6,2)$或$\overrightarrow b=(-2,-6)$.

点评 本题考查平面向量的数量积运算,考查向量共线及垂直的坐标运算,考查向量模的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网