题目内容
11.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1且z=2x+y}\\{y≥-1}\end{array}\right.$的 最大值=3.分析 作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
则当直线y=-2x+z经过点A(2,-1)时,直线的截距最大,
此时z最大,
此时z=3,
故答案为:3;
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
18.设F1、F2为椭圆的两个焦点,M为椭圆上一点,MF1⊥MF2,且|MF2|=|MO|(其中点O为椭圆的中心),则该椭圆的离心率为( )
| A. | $\sqrt{3}$-1 | B. | 2-$\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
19.
如图所示是函数y=f(x)的图象,则函数f(x)可能是( )
| A. | (x+$\frac{1}{x}$)cosx | B. | (x+$\frac{1}{x}$)sinx | C. | xcosx | D. | $\frac{cosx}{x}$ |
6.甲、乙两位同学本学期几次数学考试的平均成绩很接近,为了判断甲、乙两名同学成绩哪个稳定,需要知道这两个人的( )
| A. | 中位数 | B. | 众数 | C. | 方差 | D. | 频率分布 |
3.定义$\frac{n}{{{a_1}+{a_2}+…+{a_n}}}$为n个正数a1,a2,…an的“均倒数”.若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又${b_n}=\frac{{{a_n}+1}}{4}$,则$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_{2016}}{b_{2017}}}}$=( )
| A. | $\frac{2016}{2017}$ | B. | $\frac{1}{2017}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{2017}{2018}$ |