ÌâÄ¿ÄÚÈÝ

17£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²C1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+cost}\\{y=sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²C2ÓëÔ²C1ÍâÇÐÓÚÔ­µãO£¬ÇÒÁ½Ô²Ô²ÐĵľàÀë|C1C2|=3£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÔ²C1ºÍÔ²C2µÄ¼«×ø±ê·½³Ì£»
£¨2£©¹ýµãOµÄÖ±Ïßl1¡¢l2ÓëÔ²C2ÒìÓÚµãOµÄ½»µã·Ö±ðΪµãAºÍµãD£¬ÓëÔ²C1ÒìÓÚµãOµÄ½»µã·Ö±ðΪCºÍB£¬ÇÒl1¡Íl2£¬ÇóËıßÐÎABCDÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©Çó³öÁ½Ô²µÄÆÕͨ·½³Ì£¬ÔÙ»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©Éè³öl1£¬l2µÄ²ÎÊý·½³Ì£¬·Ö±ð´úÈëÁ½Ô²·½³ÌµÃ³öOA£¬OB£¬OC£¬ODµÄ³¤£¬µÃµ½ËıßÐεÄÃæ»ý¹ØÓÚl1µÄÇãб½Ç¦ÁµÄº¯Êý½âÎöʽ£¬ÀûÓæÁµÄ·¶Î§ºÍÕýÏÒº¯ÊýµÄÐÔÖÊÇó³öÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©Ô²C1µÄÆÕͨ·½³ÌΪ£¨x+1£©2+y2=1£¬¡àÔ²C1µÄÔ²ÐÄΪC1£¨-1£¬0£©£¬°ë¾¶r1=1£®
Ô²C1µÄÒ»°ã·½³ÌΪ£ºx2+y2+2x=0£¬
¡àÔ²C1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2+2¦Ñcos¦È=0£¬¼´¦Ñ=-2cos¦È£®
¡ßÔ²C2ÓëÔ²C1ÍâÇÐÓÚÔ­µãO£¬ÇÒÁ½Ô²Ô²ÐĵľàÀë|C1C2|=3£¬
¡àÔ²C2µÄÔ²ÐÄC2£¨2£¬0£©£¬°ë¾¶r2=2£®
¡àÔ²C2µÄ±ê×¼·½³ÌΪ£¨x-2£©2+y2=4£¬»¯ÎªÒ»°ãʽ·½³ÌΪ£ºx2+y2-4x=0£¬
¡àÔ²C2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È=0£¬¼´¦Ñ=4cos¦È£®
£¨2£©ÉèÖ±Ïßl1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý0$£¼¦Á£¼\frac{¦Ð}{2}$£©£¬l2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-tsin¦Á}\\{y=tcos¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
°Ñ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2-4x=0µÃt2-4tcos¦Á=0£¬¡à|OA|=4cos¦Á£¬
ͬÀí¿ÉµÃ|OB|=2sin¦Á£¬|OC|=2cos¦Á£¬|OD|=4sin¦Á£¬
¡ßAC¡ÍBD£¬
¡àSËıßÐÎABCD=$\frac{1}{2}$£¨OA+OC£©£¨OB+OD£©=18sin¦Ácos¦Á=9sin2¦Á£®
¡àµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óÖµ9£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø