题目内容

5.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线交两渐近线于点A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+u$\overrightarrow{OB}$(λ,μ∈R),λ2+u2=$\frac{5}{8}$,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{9}{8}$

分析 由方程可得渐近线,可得A,B,P的坐标,由已知向量式可得λ+μ=1,λ-μ=$\frac{b}{c}$,解之可得λμ的值,由λ2+u2=$\frac{5}{8}$,可得a,c的关系,由离心率的定义可得.

解答 解:双曲线的渐近线为:y=±$\frac{b}{a}$x,设焦点F(c,0),
则当x=c时,y═±$\frac{b}{a}$•c=±$\frac{bc}{a}$,
即A(c,$\frac{bc}{a}$),B(c,-$\frac{bc}{a}$),P(c,$\frac{{b}^{2}}{a}$),
因为$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,
所以(c,$\frac{{b}^{2}}{a}$)=((λ+μ)c,(λ-μ)$\frac{bc}{a}$),
所以λ+μ=1,λ-μ=$\frac{b}{c}$,
解得:λ=$\frac{c+b}{2c}$,μ=$\frac{c-b}{2c}$,
∵λ2+u2=$\frac{5}{8}$,
∴($\frac{c+b}{2c}$)2+($\frac{c-b}{2c}$)2=$\frac{5}{8}$,
即$\frac{2{c}^{2}+2{b}^{2}}{4{c}^{2}}$=$\frac{5}{8}$,
即c2=4b2
则c2=4(c2-a2),
则3c2=4a2
$\sqrt{3}$c=2a,
则e=$\frac{2}{\sqrt{3}}$=$\frac{{2\sqrt{3}}}{3}$,
故选:A.

点评 本题主要考查双曲线离心率的计算,根据交点坐标,结合平面向量的数量积公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网