题目内容

某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:
节能意识弱节能意识强总计
20至50岁45954
大于50岁103646
总计5545100
(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?
(2)若全小区节能意识强的人共有350人,则估计这350人中,年龄大于50岁的有多少人?
(3)按年龄分层抽样,从节能意识强的居民中抽5人,再是这5人中任取2人,求恰有1人年龄在20至50岁的概率.
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:(1)利用独立性检验的基本思想,只要在每个年龄段计算它们节能意识强的概率,若差距较大说明与年龄有关,也可利用|ad-bc|的值的大小来直观判断;
(2)先利用统计数据计算在节能意识强的人中,年龄大于50岁的概率,再由总体乘以概率即可得总体中年龄大于50岁的有多少人;
(3)先确定抽样比,即每层中应抽取
1
9
,故再抽到的5人中,一人年龄小于50,4人年龄大于50,从中取两个,求恰有1人年龄在20至50岁的概率为古典概型,利用古典概型的概率计算公式,分别利用列举法计数即可得所求概率
解答: 解(1)因为20至50岁的54人有9人节能意识强,
大于50岁的46人有36人节能意识强,
9
54
36
46
相差较大,所以节能意识强弱与年龄有关;
(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为
36
45

故年龄大于50岁的约有
36
45
×350=280
(人);
(3)抽取节能意识强的5人中,年龄在20至50岁的有
9
45
=1
人,
年龄大于50岁的有5-1=4人,记这5人分别为A,B1,B2,B3,B4
从这5人中任取2人,所有可能情况有10种,列举如下:
(A,B1),(A,B2),(A,B3),(A,B4),(B1,B2),
(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),
设A表示事件“这5人中任取2人,恰有1人年龄在20岁至50岁”,
则A中的基本事件有(A,B1),(A,B2),(A,B3),(A,B4),共4种,
所以P(A)=
4
10
=
2
5

故所求概率为
2
5
点评:本题考查独立性检验的基本思想,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网