题目内容
已知x,y,z均为正实数,证明:
①2x2+(y+z)2≥
(x+y+z)2;
②
+
+
≤
.
①2x2+(y+z)2≥
| 2 |
| 3 |
②
| x2+2x(y+z) |
| 2x2+(y+z)2 |
| y2+2y(z+x) |
| 2y2+(z+x)2 |
| z2+2z(x+y) |
| 2z2+(x+y)2 |
| 5 |
| 2 |
考点:不等式的证明
专题:不等式的解法及应用
分析:本题①可以用作差法加以证明;②可以利用①的结论将左边进行变形,再加以证明,易得本题结论.
解答:
证明:①∵x,y,z均为正实数,
∴2x2+(y+z)2-
(x+y+z)2
=2x2+(y+z)2-
[x2+2x(y+z)+(y+z)2]
=
[4x2-4x(y+z)+(y+z)2]
=
(2x+y+z)2>0,
∴2x2+(y+z)2≥
(x+y+z)2;
②由①知:2x2+(y+z)2≥
(x+y+z)2,
∴
≤
,
∴
≤
,
同理
≤
,
≤
,
∴
+
+
≤
+
+
=
+
+
-
+
=-
+
=-
+
≤
.
∴
+
+
≤
.
∴2x2+(y+z)2-
| 2 |
| 3 |
=2x2+(y+z)2-
| 2 |
| 3 |
=
| 1 |
| 3 |
=
| 1 |
| 3 |
∴2x2+(y+z)2≥
| 2 |
| 3 |
②由①知:2x2+(y+z)2≥
| 2 |
| 3 |
∴
| 1 |
| 2x2+(y+z)2 |
| 3 |
| 2(x+y+z)2 |
∴
| x2+2x(y+z) |
| 2x2+(y+z)2 |
| 3[x2+2x(y+z)] |
| 2(x+y+z)2 |
同理
| y2+2y(z+x) |
| 2y2+(z+x)2 |
| 3[y2+2y(z+x)] |
| 2(x+y+z)2 |
| z2+2z(x+y) |
| 2z2+(x+y)2 |
| 3[z2+2z(x+y)] |
| 2(x+y+z)2 |
∴
| x2+2x(y+z) |
| 2x2+(y+z)2 |
| y2+2y(z+x) |
| 2y2+(z+x)2 |
| z2+2z(x+y) |
| 2z2+(x+y)2 |
≤
| 3[x2+2x(y+z)] |
| 2(x+y+z)2 |
| 3[y2+2y(z+x)] |
| 2(x+y+z)2 |
| 3[z2+2z(x+y)] |
| 2(x+y+z)2 |
=
| 3[x2+2x(y+z)] |
| 2(x+y+z)2 |
| 3[y2+2y(z+x)] |
| 2(x+y+z)2 |
| 3[z2+2z(x+y)] |
| 2(x+y+z)2 |
| 5 |
| 2 |
| 5 |
| 2 |
=-
| 2x2+2y2+2z2-2xy-2yz-2zx |
| 2(x+y+z)2 |
| 5 |
| 2 |
=-
| (x-y)2+(y-z)2+(z-x)2 |
| 2(x+y+z)2 |
| 5 |
| 2 |
≤
| 5 |
| 2 |
∴
| x2+2x(y+z) |
| 2x2+(y+z)2 |
| y2+2y(z+x) |
| 2y2+(z+x)2 |
| z2+2z(x+y) |
| 2z2+(x+y)2 |
| 5 |
| 2 |
点评:本题考查了作差法和配方法证明不等式,本题思维难度大,运算也很复杂,属于难题.
练习册系列答案
相关题目
函数f(x)=log2(x2-5x+6)的单调递减区间为 ( )
A、(
| ||
| B、(3,+∞) | ||
C、(-∞,
| ||
| D、(-∞,2) |