题目内容

已知x,y,z均为正实数,证明:
①2x2+(y+z)2
2
3
(x+y+z)2
x2+2x(y+z)
2x2+(y+z)2
+
y2+2y(z+x)
2y2+(z+x)2
+
z2+2z(x+y)
2z2+(x+y)2
5
2
考点:不等式的证明
专题:不等式的解法及应用
分析:本题①可以用作差法加以证明;②可以利用①的结论将左边进行变形,再加以证明,易得本题结论.
解答: 证明:①∵x,y,z均为正实数,
∴2x2+(y+z)2-
2
3
(x+y+z)2
=2x2+(y+z)2-
2
3
[x2+2x(y+z)+(y+z)2]

=
1
3
[4x2-4x(y+z)+(y+z)2]

=
1
3
(2x+y+z)2
>0,
∴2x2+(y+z)2
2
3
(x+y+z)2
②由①知:2x2+(y+z)2
2
3
(x+y+z)2
1
2x2+(y+z)2
3
2(x+y+z)2

x2+2x(y+z)
2x2+(y+z)2
3[x2+2x(y+z)]
2(x+y+z)2

同理
y2+2y(z+x)
2y2+(z+x)2
3[y2+2y(z+x)]
2(x+y+z)2

z2+2z(x+y)
2z2+(x+y)2
3[z2+2z(x+y)]
2(x+y+z)2

x2+2x(y+z)
2x2+(y+z)2
+
y2+2y(z+x)
2y2+(z+x)2
+
z2+2z(x+y)
2z2+(x+y)2

3[x2+2x(y+z)]
2(x+y+z)2
+
3[y2+2y(z+x)]
2(x+y+z)2
+
3[z2+2z(x+y)]
2(x+y+z)2

=
3[x2+2x(y+z)]
2(x+y+z)2
+
3[y2+2y(z+x)]
2(x+y+z)2
+
3[z2+2z(x+y)]
2(x+y+z)2
-
5
2
+
5
2

=-
2x2+2y2+2z2-2xy-2yz-2zx
2(x+y+z)2
+
5
2

=-
(x-y)2+(y-z)2+(z-x)2
2(x+y+z)2
+
5
2

5
2

x2+2x(y+z)
2x2+(y+z)2
+
y2+2y(z+x)
2y2+(z+x)2
+
z2+2z(x+y)
2z2+(x+y)2
5
2
点评:本题考查了作差法和配方法证明不等式,本题思维难度大,运算也很复杂,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网