题目内容

10.将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)的图象关于y轴对称,则当φ取最小的值时,g(0)=-1.

分析 利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性求得g(x)的解析式,从而求得g(0)的值.

解答 解:将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)=sin(2x-2φ)的图象,
若函数g(x)的图象关于y轴对称,则2φ=2kπ+$\frac{π}{2}$,k∈Z,∴φ的最小值为$\frac{π}{4}$,
g(x)=sin(2x-2φ)=sin(2x-$\frac{π}{2}$)=-cos2x,∴g(0)=-1,
故答案为:-1.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网