题目内容

9.已知平面向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,5),$\overrightarrow{c}$=(m,3),且($\overrightarrow{a}$+$\overrightarrow{c}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),则m=$\frac{3±\sqrt{17}}{2}$.

分析 根据平面向量的坐标运算与共线定理,列出方程求出m的值.

解答 解:平面向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,5),$\overrightarrow{c}$=(m,3),
则$\overrightarrow{a}$+$\overrightarrow{c}$=(1+m,m+3),
$\overrightarrow{a}$-$\overrightarrow{b}$=(-1m-5),
且($\overrightarrow{a}$+$\overrightarrow{c}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),
∴(1+m)(m-5)+(m+3)=0,
m2-3m-2=0,
解得m=$\frac{3+\sqrt{17}}{2}$或m=$\frac{3-\sqrt{17}}{2}$.
故答案为:$\frac{{3±\sqrt{17}}}{2}$.

点评 本题考查了平面向量的坐标运算与共线定理应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网