题目内容
点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是 .
考点:圆与圆的位置关系及其判定
专题:计算题,直线与圆
分析:化圆的方程为标准方程,确定两圆的位置关系,可得|PQ|的最小值是两圆的圆心距减去半径的和.
解答:
解:圆x2+y2-8x-4y+11=0化为标准方程为(x-4)2+(y-2)2=9,圆心为(4,2),半径为3;
圆x2+y2+4x+2y+1=0化为标准方程为(x+2)2+(y+1)2=4,圆心为(-2,-1),半径为2,
∴两圆的圆心距为3
>5
∴两圆外离
∴|PQ|的最小值是两圆的圆心距减去半径的和,即3
-5,
故答案为:3
-5.
圆x2+y2+4x+2y+1=0化为标准方程为(x+2)2+(y+1)2=4,圆心为(-2,-1),半径为2,
∴两圆的圆心距为3
| 5 |
∴两圆外离
∴|PQ|的最小值是两圆的圆心距减去半径的和,即3
| 5 |
故答案为:3
| 5 |
点评:本题考查圆与圆的位置关系,考查圆的一般方程与标准方程,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目
某学校文艺委员安排五个文艺节目的出场顺序,其中两个音乐节目既不能放在最前,也不能放在最后,那么不同的排法有( )
| A、30种 | B、36种 |
| C、16种 | D、24种 |