题目内容

9.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,若定义在R上的函数f(x)满足f(-x)=f(x),f′(x)为f(x)的导函数,则f′(-x)=(  )
A.f(x)B.-f(x)C.f′(x)D.-f′(x)

分析 由已知中(x2)'=2x,(x4)'=4x3,(cosx)'=-sinx,…分析其规律,我们可以归纳推断出,偶函数的导函数为奇函数,再结合函数奇偶性的性质,即可得到答案.

解答 解:由(x2)'=2x中,原函数为偶函数,导函数为奇函数;
(x4)'=4x3中,原函数为偶函数,导函数为奇函数;
(cosx)'=-sinx中,原函数为偶函数,导函数为奇函数;

我们可以推断,偶函数的导函数为奇函数.
若定义在R上的函数f(x)满足f(-x)=f(x),
则函数f(x)为偶函数,
又∵f′(x)为f(x)的导函数,则f′(x)奇函数
故f′(-x)=-f′(x)
故选:D.

点评 本题考查的知识点是归纳推理,及函数奇偶性的性质,其中根据已知中原函数与导函数奇偶性的关系,得到结论是解答本题的关键

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网