题目内容

16.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是$\frac{9}{2}$.

分析 由已知得ξ的可能取值为3,4,5,分别求出相应的概率,由此能求出E(ξ).

解答 解:由已知得ξ的可能取值为3,4,5,
P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
P(ξ=4)=$\frac{{C}_{3}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,
P(ξ=5)=$\frac{{C}_{4}^{2}}{{C}_{5}^{3}}$=$\frac{6}{10}$,
∴E(ξ)=$3×\frac{1}{10}+4×\frac{3}{10}+5×\frac{6}{10}$=$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查离散型随机变量的数学期望的求法,是基础题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网