题目内容

2.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<$\frac{1}{2}$,则(  )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

分析 由已知得0<p1<p2<$\frac{1}{2}$,$\frac{1}{2}$<1-p2<1-p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.

解答 解:∵随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2,…,
0<p1<p2<$\frac{1}{2}$,
∴$\frac{1}{2}$<1-p2<1-p1<1,
E(ξ1)=1×p1+0×(1-p1)=p1
E(ξ2)=1×p2+0×(1-p2)=p2
D(ξ1)=(1-p12p1+(0-p12(1-p1)=${p}_{1}-{{p}_{1}}^{2}$,
D(ξ2)=(1-p22p2+(0-p22(1-p2)=${p}_{2}-{{p}_{2}}^{2}$,
D(ξ1)-D(ξ2)=p1-p12-(${p}_{2}-{{p}_{2}}^{2}$)=(p2-p1)(p1+p2-1)<0,
∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).
故选:A.

点评 本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网