题目内容

19.已知向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°,且|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,且$\overrightarrow{OC}$⊥$\overrightarrow{AB}$,则实数$\frac{m}{n}$的值为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.6D.4

分析 利用向量垂直与数量积的关系即可得出.

解答 解:$\overrightarrow{OA}•\overrightarrow{OB}$=3×2×cos60°=3,∵$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,且$\overrightarrow{OC}$⊥$\overrightarrow{AB}$,
∴(m$\overrightarrow{OA}$+n$\overrightarrow{OB}$)•$\overrightarrow{AB}$=(m$\overrightarrow{OA}$+n$\overrightarrow{OB}$)$•(\overrightarrow{OB}-\overrightarrow{OA})$=(m-n)$\overline{OA}•\overrightarrow{OB}$-m${\overrightarrow{OA}}^{2}$+n${\overrightarrow{OB}}^{2}$=0,
∴3(m-n)-9m+4n=0,
∴$\frac{m}{n}$=$\frac{1}{6}$.
故选:A.

点评 本题考查了向量垂直与数量积的关系、向量三角形法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网