题目内容
3.在△ABC中,a、b、c分别为角A、B、C的对边,若a=2$\sqrt{3}$,sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,sinBsinC=cos2$\frac{A}{2}$,求A、B及b、c.分析 sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,可得sinC=$\frac{1}{2}$,于是C=$\frac{π}{6}$或$\frac{5π}{6}$.由sinBsinC=cos2$\frac{A}{2}$,可得sinB=cosA+1,对C分类讨论,利用和差化积、正弦定理即可得出.
解答 解:在△ABC中,∵sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,∴sinC=$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{π}{6}$或$\frac{5π}{6}$.
∵sinBsinC=cos2$\frac{A}{2}$,∴sinBsinC=$\frac{cosA+1}{2}$,
∴sinB=cosA+1,
①C=$\frac{π}{6}$时,$sin(\frac{5π}{6}-A)$=cosA+1,化为:$sin(A-\frac{π}{6})$=1,
∵A∈$(0,\frac{5π}{6})$,解得:$A-\frac{π}{6}$=$\frac{π}{2}$,可得A=$\frac{2π}{3}$,
∴B=π-A-B=$\frac{π}{6}$,
由正弦定理可得:$\frac{2\sqrt{3}}{sin\frac{2π}{3}}$=$\frac{b}{sin\frac{π}{6}}$=$\frac{c}{sin\frac{π}{6}}$,解得b=c=2.
②C=$\frac{5π}{6}$,可得$sin(\frac{π}{6}-A)$=cosA+1>1,舍去.
点评 本题考查了和差化积、正弦定理、倍角公式、三角形内角和定理,考查了分类讨论方法、推理能力与计算能力,属于中档题.
| A. | 8 | B. | 9 | C. | 10 | D. | 12 |
| A. | 1 | B. | -1 | C. | $\sqrt{2}$ | D. | ±$\sqrt{2}$ |
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
| A. | $(\frac{1}{2e},\frac{1}{2})$ | B. | $(0,\frac{1}{2})$ | C. | $(\frac{1}{2e},+∞)$ | D. | $(\frac{1}{e},\frac{1}{2})$ |