题目内容

8.设函数f(x)=x,(x≥1)函数g(x)=$\frac{1}{{x}^{2}-2x+4}$,(0<x$≤\sqrt{a}$+1,其中a>0).
令h(x)为函数f(x)与g(x)的积函数.
(1)求函数h(x)的表达式,并求出其定义域;
(2)当h(x)的值域为[$\frac{1}{3}$,$\frac{1}{2}$]时,求实数a的取值范围.

分析 (1)直接相乘,可得函数h(x)的表达式,并求出其定义域;
(2)当h(x)的值域为[$\frac{1}{3}$,$\frac{1}{2}$]时,4≤x+$\frac{4}{x}$≤5,x+$\frac{4}{x}$=5时,x=1或4.可得2≤$\sqrt{a}$+1≤4,即可求实数a的取值范围.

解答 解:(1)h(x)=f(x)g(x)=$\frac{x}{{x}^{2}-2x+4}$(1≤x$≤\sqrt{a}$+1,其中a>0).
(2)h(x)=$\frac{1}{x+\frac{4}{x}-2}$,
∵h(x)的值域为[$\frac{1}{3}$,$\frac{1}{2}$],
∴4≤x+$\frac{4}{x}$≤5,
x+$\frac{4}{x}$=5时,x=1或4.
∴2≤$\sqrt{a}$+1≤4,
∴1≤a≤9.

点评 本题考查函数解析式的确定,考查函数的值域,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网