题目内容
13.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若点P在椭圆上,且$\overrightarrow{P{F}_{1}}$ $•\overrightarrow{P{F}_{2}}$=0,则椭圆离心率的取值范围是$[\frac{\sqrt{2}}{2},1)$.分析 设P(x,y),则满足椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且$\overrightarrow{P{F}_{1}}$ $•\overrightarrow{P{F}_{2}}$=0,化为x2=$\frac{{a}^{2}({c}^{2}-{b}^{2})}{{a}^{2}-{b}^{2}}$,利用0≤x2<a2,即可得出.
解答 解:设P(x,y),则满足椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
又$\overrightarrow{P{F}_{1}}$=(-c-x,-y),$\overrightarrow{P{F}_{2}}$=(c-x,-y).
且$\overrightarrow{P{F}_{1}}$ $•\overrightarrow{P{F}_{2}}$=0,
∴x2-c2+y2=0,
∴y2=c2-x2.
代入椭圆方程可得:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{c}^{2}-{x}^{2}}{{b}^{2}}$=1.
化为x2=$\frac{{a}^{2}({c}^{2}-{b}^{2})}{{a}^{2}-{b}^{2}}$,
∵0≤x2<a2,
∴0≤$\frac{{a}^{2}({c}^{2}-{b}^{2})}{{a}^{2}-{b}^{2}}$<a2,又b2=a2-c2,0<e<1.
化简解得:$\frac{\sqrt{2}}{2}$≤e<1.
故答案为:$[\frac{\sqrt{2}}{2},1)$.
点评 本题考查了椭圆的标准方程及其性质、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.
| A. | f(0)=0 | B. | f(-1)>f(2) | C. | f(-2)-f(2)=0 | D. | f(-3)<f($\sqrt{2}$) |