题目内容
20.已知命题p:{1}∈{1,2,3},q:{3}⊆{1,2,3},则在命题:①p∧q;②p∨q;③¬p;④¬q中,真命题的个数是( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 先判定命题p,q的真假,再利用复合命题真假的判定方法即可得出.
解答 解:命题p:{1}∈{1,2,3},是假命题.
q:{3}⊆{1,2,3},是真命题.
∴①p∧q是假命题;②p∨q是真命题;③¬p是真命题;④¬q是假命题,
真命题的个数是2.
故选:B.
点评 本题考查了复合命题真假的判定方法、集合的运算性质,考查了推理能力,属于基础题.
练习册系列答案
相关题目
10.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足2$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$2,设$\overrightarrow{OP}=x\overrightarrow{a}+y\overrightarrow{b}$,若x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{x≥0}\\{y≥0}\end{array}\right.$,则|$\overrightarrow{OP}$|的最小值是( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
5.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-x,x≤1\\ \frac{1}{1-x},x>1\end{array}\right.$则f(f(-2))的值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{5}$ | C. | $-\frac{1}{5}$ | D. | $-\frac{1}{2}$ |
12.(2x-$\frac{1}{\sqrt{x}}$)12(x>0)的展开式中,第9项为( )
| A. | C${\;}_{12}^{8}$ | B. | C${\;}_{12}^{8}$24 | C. | -C${\;}_{12}^{9}$ | D. | -C${\;}_{12}^{9}$23 |
9.若角α的终边过点(-1,2),则sin(π-2α)•cos(π-2α)的值为( )
| A. | -$\frac{12}{25}$ | B. | $\frac{12}{25}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | -$\frac{\sqrt{5}}{5}$ |