题目内容

5.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-x,x≤1\\ \frac{1}{1-x},x>1\end{array}\right.$则f(f(-2))的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{5}$C.$-\frac{1}{5}$D.$-\frac{1}{2}$

分析 利用分段函数的性质求解.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{x^2}-x,x≤1\\ \frac{1}{1-x},x>1\end{array}\right.$,
∴f(-2)=(-2)2-(-2)=6,
f(f(-2))=f(6)=$\frac{1}{1-6}$=-$\frac{1}{5}$.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网